Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization

نویسندگان

  • Churlzu Lim
  • Hanif D. Sherali
  • Stan Uryasev
چکیده

Conditional Value-at-Risk (CVaR) is a portfolio evaluation function having appealing features such as sub-additivity and convexity. Although the CVaR function is nondifferentiable, scenario-based CVaR minimization problems can be reformulated as linear programs (LPs) that afford solutions via widely-used commercial softwares. However, finding solutions through LP formulations for problems having many financial instruments and a large number of price scenarios can be timeconsuming as the dimension of the problem greatly increases. In this paper, we propose a two-phase approach that is suitable for solving CVaR minimization problems having a large number of price scenarios. In the first phase, conventional differentiable optimization techniques are used while circumventing nondifferentiable points, and in the second phase, we employ a theoretically convergent, variable target value nondifferentiable optimization technique. The resultant two-phase procedure guarantees infinite convergence to optimality. As an optional third phase, we additionally perform a switchover to a simplex solver starting with a crash basis obtained from the second phase when finite convergence to an exact optimum is desired. This three phase procedure substantially reduces the effort required in comparison with the direct use of a commercial stand-alone simplex solver (CPLEX 9.0). Moreover, C. Lim ( ) Systems Engineering & Engineering Management, University of North Carolina at Charlotte, Charlotte, NC 28223, USA e-mail: [email protected] H.D. Sherali Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0118, USA e-mail: [email protected] S. Uryasev Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611-6595, USA e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three steps method for portfolio optimization by using Conditional Value at Risk measure

Comprehensive methods must be used for portfolio optimization. For this purpose, financial data of stock companies, inputs and outputs variable, the risk measure and investor’s preferences must be considered. By considering these items, we propose a method for portfolio optimization. In this paper, we used financial data of companies for screening the stock companies. We used Conditional Value ...

متن کامل

Portfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization

Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...

متن کامل

Robust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models

Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...

متن کامل

Using MODEA and MODM with Different Risk Measures for Portfolio Optimization

The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...

متن کامل

Optimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm

The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010